
edited by Seung-Woo Lee Toyoki Kunitake

Handbook of Molecular Imprinting Advanced Sensor Applications

edited by Seung-Woo Lee Toyoki Kunitake

Molecular Imprinting Advanced Sensor Applications

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Handbook of Molecular Imprinting: Advanced Sensor Applications Copyright © 2013 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4316-65-1 (Hardcover) ISBN 978-981-4364-32-4 (eBook)

Printed in the USA

Contents

Part	1 Fundamentals of Molecular Imprinting and	
	Sensor Applications	1
1.	Fundamentals and Perspectives of Molecular	
	Imprinting in Sensor Applications	3
	Seung-Woo Lee, Sergiy Korposh, Roman Selyanchyn, and	
	Toyoki Kunitake	
	1.1 Introduction	3
	1.2 Molecular Imprinting in Organic Matrices	4
	1.2.1 Covalent Approach	6
	1.2.2 Non-Covalent Approach	7
	1.2.3 Other Approaches for Organic	
	MIP Fabrication	9
	1.3 Molecular Imprinting in Inorganic Matrices	11
	1.3.1 Sol-Gel Approach	12
	1.3.2 Liquid Phase Deposition (LPD) Approach	15
	1.4 Major Transducers	16
	1.4.1 Mass-Sensitive Transducer	17
	1.4.2 Electrochemical Transducer	19
	1.4.3 Optical Transducer	21
	1.5 Applications of Organic MIP Materials in Sensors	26
	1.6 Applications of Inorganic MIP Materials in Sensors	31
	1.6.1 Silica Based Imprinted Materials	31
	1.6.2 Hybrid Imprinted Materials	38
	1.6.3 LPD Based Imprinted Materials	40
	1.6.4 Strategy for Improved Selectivity	43
	1.7 Conclusions	45
2.	Molecularly Imprinted Optical Sensing Receptor	65
	Sing Muk Ng and Ramaier Narayanaswamy	
	2.1 Introduction	65
	2.2 Chronological Protocols and Procedures	67

2.2.1	Selection of Materials and Ingredients	67
2.2.2	Polymerization Options	72
	2.2.2.1 Free-radical initiated	
	polymerization	72
	2.2.2.2 Condensation polymerization	73
	2.2.2.3 Electropolymerization	74
2.2.3	Configurations of Matrix	75
	2.2.3.1 Bulk	75
	2.2.3.2 Monoliths	76
	2.2.3.3 Membranes	77
	2.2.4 Handling and Preparation	78
2.3 Rationa	al Design of Receptors	79
2.3.1	Interaction Study of Pre-Polymerization	
	Ingredients	79
2.3.2	Computational Modeling	81
2.3.3	Thermodynamic Considerations	83
2.3.4	Repeatability and Reproducibility	86
2.3.5	Commercialization	87
2.4 Optical	Sensing Schemes and Transduction	
System	S	89
2.4.1	Direct Monitoring of Analyte	89
2.4.2	Direct Fluorescence	90
2.4.3	Displacement Assay	92
2.4.4	Reflectance and Absorbance	94
2.4.5	Phosphorescence	96
2.4.6	Chemiluminescence	97
2.4.7	Surface Plasmon Resonance	98
2.4.8	Fluorescence Lifetime Decay	100
2.5 Advanc	ced Probe Designs and Sensing	
Configu	uration	102
2.5.1	Sensor Arrays	102
2.5.2	Optical MIP Chips	104
2.5.3	Micro- and Nano-sized Sensors	106
2.6 Binding	g Aspects and Analytical Signals	108
2.6.1	Binding Isotherms and Affinity	
	Distributions	108
2.6.2	Batch Binding Analysis and Binding	
	Models	109

	2.6.3 Correlation of Analytical Signal with	
	Binding Isotherms Models	110
	2.6.4 Advantage and Limitation	111
	2.7 Summary	112
3.	Translational Applications of Molecularly	
	Imprinted Polymer-Based Electrochemical	
	Sensors	119
	Hung-Yin Lin, James L. Thomas, and Mei-Hwa Lee	
	3.1 Introduction	119
	3.2 Principle of Molecularly Imprinted Polymers	121
	3.2.1 Synthesis of MIPs	121
	3.2.2 Characterization of MIPs	123
	3.2.3 Morphology of MIPs	124
	3.3 Transducers Employed with Molecularly	
	Imprinted Polymers as Sensing Elements	126
	3.3.1 Types of Transducers	126
	3.3.2 Interface of Transducer and Molecularly	
	Imprinted Polymers	130
	3.3.3 Miniature MIPs-Based Sensors	130
	3.3.4 Demonstration of MIPs-Based	
	Electrochemical Sensors	134
	3.4 Molecularly Imprinted Polymers-Based Sensors	
	for the Real World	135
	3.4.1 Source of Real Samples	135
	3.4.2 Biomarkers	138
	3.4.3 Cross-Talk Interference	138
	3.5 Prospective	139
4	Optical Sensors for MonitoringTrace Inorganic	
	Toxins	147
	T. Prasada Rao, Dhanya James, and Milja T. Elias	
	4.1 Environmental Trace Analysis	148
	4.2 Inorganic Toxins	148
	4.3 Importance of Sampling in Trace Analysis	152
	4.3.1 Sample Handling	152
	4.3.2 Sample Pre-Treatment, Homogenization	
	and Sub-Sampling	152
	4.3.3 Sample Preparation	152

	4.3.3.1 Decomposition of inorganic or	
	organic matrices	153
	4.3.3.2 Separation and pre-concentration	
	steps	153
	4.4 Trace/Ultra Trace Analytical Techniques	154
	4.4.1 Selection of Analytical Technique/Method	157
	4.4.2 Essential Features of Analytical	
	Techniques	158
	4.4.2.1 Signal processing, data handling	
	and reporting	158
	4.4.2.2 Signal integrity	158
	4.4.2.3 Data handling	158
	4.4.2.4 Good Automated Laboratory	
	Practice (GALP) [1]	159
	4.4.2.5 Reporting of results	159
	4.5 Chemical Speciation	160
	4.6 Sensors	161
	4.6.1 Fundamentals of Optical Sensors	
	(Optodes)	163
	4.6.2 Optical Sensing of Ionic Analytes	163
	4.6.3 Optical Sensing of Neutral Analytes	165
	4.7 Molecularly Imprinted Polymers	166
	4.7.1 Molecular Imprinting Technology	167
	4.7.2 MIPs in Optical Sensing	168
	4.8 Optical Sensors vis-a-vis Other Sensor Techniques	174
	4.9 Future Outlook	174
5.	MIP Thermistor	181
	Rajagopal Rajkumar, Umporn Athikomrattanakul,	
	Kristian Lettau, Martin Katterle, Bengt Danielsson,	
	Axel Warsinke, Nenad Gajovic-Eichelmann, and	
	Frieder W. Scheller	
	5.1 Introduction	181
	5.1.1 The MIP Concept	181
	5.1.2 MIP Sensors	183
	5.1.3 Enzyme Thermistors	184
	5.2 Covalently Imprinted Polymers Using Boronic	
	Acid Derivates	188
	5.2.1 Synthesis of Template (Fructosyl Valine)	189

		5.2.2 Synthesis of Functional Monomer (Vinyl	
		Phenyl Boroxine)	189
		5.2.3 Synthesis of N-[β-D-Fructopyranosyl-(1)]-	
		L-Valine2,3; 4,5-bis-O- ((4-Vinylphenyl)	
		Boronate)	190
		5.2.4 Synthesis of MIP and Control Polymers	190
		5.2.5 MIP Thermistor Set-Up and Measurements	190
		5.2.6 Thermometric MIP Sensor for Fructose	191
		5.2.7 Thermometric MIP Sensor for Fructosyl	
		Valine	193
		5.2.8 Concentration Dependence of Fru-Val	
		Binding	194
		5.2.9 Closed Loop Studies	196
	5.3	Non-Covalent MIPs Containing Two Functional	
		Monomers for Carboxyphenyl Aminohydantoin	
		(CPAH) as Analogon of Nitrofurantoin (NFT)	197
		5.3.1 Synthesis of an Analogue Template,	
		Carboxyphenyl Aminohydantoin (CPAH)	197
		5.3.2 Synthesis of Functional Monomers	198
		5.3.3 Preparation of MIPs Based on Two	
		Functional Monomers	199
		5.3.4 MIP-Based Thermometric Study	200
	5.4	Bi-Functional Esterolytically Active MIP	203
		5.4.1 Polymer Preparation	204
		5.4.2 Thermometric Characterization of	
		Adsorption and Catalysis	205
	5.5	Conclusions	209
Part	2	Potential Materials for Molecular	
		Imprinting	217
6.	The	e Use of a Thermally Reversible Bond for	
	Mo	lecular Imprinting	219
	Ji Ya	oung Chang	
	6.1	Introduction	219
	6.2	Cross-Linked Vinyl Polymer Matrix	221
		Silica Matrix	226
	6.4	Polyimide as Noncross-Linked Matrix	228
	6.5	Summary and Outlook	232

x Contents

7.	Molecular-Sieving Silica/Tin Oxide Sensor	
	Prepared by Chemical Vapor Deposition in the	
	Presence of Template Molecule	235
	Naonobu Katada and Miki Niwa	
	7.1 Introduction	235
	7.2 Preparation Method	238
	7.3 Selective Chemisorption	241
	7.4 Sensing Function	244
	7.4.1 Selectivity for Various Molecules	244
	7.4.2 Improved Response and Selectivity of	
	Film-Type Sensor	249
	7.4.3 Detection of Dialkyl Phthalate	252
	7.5 Conclusion	254
Q	Environmental Approaches by Molecular	
0.	Imprinting on Titanium Dioxide	259
	Milka Nussbaum and Yaron Paz	239
		0.00
	8.1 Introduction	260
	8.2 Preparation	269
	8.2.1 Preparation of Molecularly Imprinted (MI)	0.00
	Structures	269
	8.2.1.1 Sol-gel method using alkoxide	071
	chemistry	271
	8.2.1.2 "Layer-by-layer" approach using	272
	sol-gel method	272
	8.2.1.3 Liquid phase deposition/chemical	274
	bath deposition 8.2.1.4 Titanyl sulfate chemistry	274
	8.2.1.5 Titanium tetrachloride chloride	275
	chemistry	276
	8.2.1.6 Potassium titanyl oxalate	270
	chemistry	276
	8.2.2 Preparation of Molecularly Imprinted	270
	Polymer (MIP) Structures	276
	8.2.3 Preparation of Molecularly Imprinted	270
	Inorganic (MII) Structures	277
	8.2.4 Preparation of Molecularly Imprinted	2,,
	Host (MIH) Structures	278
	8.3 Characterization	279
		- • •

	8.3.1	Interacti	ion Betwe	en Host and Template	279
	8.3.2	Assessm	ent of Rei	moval of Template	
		Molecul	es		281
	8.3.3	Concent	ration and	l Structure of Sites	282
	8.3.4	Surface .	Area		282
	8.3.5	Film Mo	rphology	and Particles' Size	283
	8.3.6	Film Thi	ckness		283
	8.3.7	Crystalli	ne Phase		284
8.4 A	pplica	tions			284
		Sensing			284
		8.4.1.1	Quartz ci	rystal microbalance	
			(QCM) se	ensors	285
		8.4.1.2	Electroch	nemical sensors	286
		8.4.1.3	Ion sensi	tive field effect	
			transisto	rs	288
		8.4.1.4	Matrix-as	ssisted laser desorption/	
				n (MALDI)mass-	
			spectron	netry	290
		8.4.1.5	Evaluatio	on of performance of	
			sensors	-	290
			8.4.1.5.1	Sensitivity	291
				Imprinting efficiency	
				ratio	291
			8.4.1.5.3	Selectivity	293
			8.4.1.5.4	Response time	303
			8.4.1.5.5	Repeatability	304
			8.4.1.5.6	Stability and	
				reproducibility	304
	8.4.2	Photoca	talysis		305
		8.4.2.1	Introduc	tion	305
		8.4.2.2	Performa	ance	307
			8.4.2.2.1	Efficiency	308
			8.4.2.2.2	Selectivity	310
			8.4.2.2.3	Adsorption vs.	
				photocatalytic	
				degradation	313
			8.4.2.2.4	Imprinting of	
				pseudo-target molecules	316
			8.4.2.2.5	Intermediates and	
				by-products	318

		8.4.2.2.6 Stability and	
		repeatability	319
		8.4.3 Separation by Selective Filtration	320
	8.5	Conclusion	321
Part	3	MIP Sensors for Environmental	
		and Trace Detection	331
9.		lecularly Imprinted Nanocomposites for Highly	
	Ser	sitive SPR Detection	333
	Jun	Matsui and Kensuke Akamatsu	
		Introduction	333
	9.2	Surface Plasmon Resonance of Metal Nanoparticles	335
		9.2.1 Biosensors Utilizing Gold Nanoparticles	337
		9.2.2 Synthesis of Surface-Functionalized Gold	
		Nanoparticles	339
	9.3	Molecularly Imprinted Nanocomposite	340
		9.3.1 Concept	340
		9.3.2 Colorimetric Sensing with Molecularly	
		Imprinted Nanocomposite	340
		9.3.2.1 Physical properties	342
		9.3.2.2 Selectivity	343
		9.3.3 SPR Sensor with Molecularly Imprinted	244
		Nanocomposite Gel	344
		9.3.3.1 Preparation of sensor chip 9.3.3.2 SPR measurement	345
			346 348
		9.3.4 SPR Sensing of Atrazine	348 348
		9.3.4.1 Preparation of sensor chip 9.3.4.2 Effects of gold nanoparticles on	348
		sensitivity	349
		9.3.4.3 Effects of molecular imprinting	349
		on sensitivity	350
		9.3.4.4 Selectivity	352
	9.4	Conclusion	353
10.	Мо	lecularly Imprinted Room Temperature	
	Pho	osphorescent Optosensors for Environmental	
	Pol	lutants	359
	He-	Fang Wang and Xiu-Ping Yan	
	10.3	1 Introduction	359

	10.2	Fabrica	tion of MIPs-Based RTP Optosensors	361
		10.2.1	Conventional MIPs with RTP Detection	361
		10.2.2	Incorporation of Heavy Atoms into MIPs	364
		10.2.3	Surface Imprinting on Phosphorescent	
			Nanoparticles	368
	10.3	RTP De	tection Modes	374
		10.3.1	Static Measurement	374
		10.3.2	Flow-Through Assays	377
	10.4	Applica	itions	379
		10.4.1	RTP Sensing of Nafcillin	379
		10.4.2	RTP Sensing of PAHs	381
			Sensing of Copper Ions	382
			Sensing of Pentachlorophenol	383
	10.5	Conclu	sions	384
11	l. Elec	trochen	nical Sensing of Nitroaromatic	
	Com	pounds	in Natural Waters and Soil Samples	389
	Tahe	r Alizado	eh	
	11.1	Introdu	iction	389
			omatic Compounds	390
	11.3		nt Strategies Developed for Preparation	
			for Nitroaromatic Compounds	392
			chemistry of Nitroaromatic Compounds	398
	11.5		sed Electrochemical Sensors	400
		11.5.1	Polymerization Directly on the Electrode	
			Surface	401
			11.5.1.1 Sol-gel and poly TiO ₂ systems	401
			11.5.1.2 Electrodes modified with	
			electropolymerized films	405
		11.5.2	Coupling of the MIP Particles with	
		44 5 0	Electrochemical Transducers	407
		11.5.3	MIP as a Solid Phase Sorbent for	
			Separation and Preconcentration	
			Before Electrochemical Determination	413
12			tion Based on Cyclodextrin Anchored	
			Imprinted TiO ₂ Thin Films	421
	Seun	g-Woo L	ee	
		Introdu		421
	12.2	Surface	Sol-Gel Process and Molecular Imprinting	423

	12.3	Two-Di	imensional Imprinting with Juxtaposed	
		CD Hos	sts on Metal Oxide Surface	426
		12.3.1	BPA Sensing Based on Electrochemical	
			Impedance Changes	427
		12.3.2	SAM Effects on cSPI Response	429
		12.3.3	cSPI Response to BPA on a BPA-Imprinted	
			TiO ₂ / β -CD Film	431
		12.3.4	Selectivity of the BPA-Imprinted	
			TiO ₂ / β -CD Film	433
	12.4	Trace D	Detection of Explosives Using a CD-Anchored	
		Metal C	Oxide Matrix	435
		12.4.1	Surface Modification for 2,4-DNT	
			Recognition	436
		12.4.2	cSPI Response and Sensitivity to 2,4-DNT	437
	12.5	-	ting Process Associated with a Gas Phase	
			Technique	439
			Gas-Phase Surface Sol-Gel (GSSG) Process	439
		12.5.2	Three-Dimensional Assembly of	
			Templated CDs with TiO ₂ Ultrathin Layers	440
			BPA Response and Imprinting Effect	441
	12.6	Future	Prospects	444
13	Mole	cularly	Imprinted Au Nanoparticle Composites	
10.		-	pplication for Sensing, Controlled	
			l Photoelectrochemistry	453
		-	er and Ran Tel-Vered	100
				450
		Introdu		453
	13.2	-	ting of Molecular Recognition Sites in Au	
			nposites via Donor–Acceptor and/or static Interactions	456
	122			450
	13.3		ted Ligand-Functionalized bis-Aniline- nked Au NP Composites for Sensing	462
	12/		chemically Triggered Imprinted Au NP	402
	15.4	"Spong		467
	12 E			407
	13.3		lling the Wettability of Surfaces by ted Au NP Composites	471
	126	-	ted Au NP Composites ted Semiconductor Nanoparticle/	4/1
	13.0	-	Vanoparticle Composites for Enhanced	
			lectrochemistry	474
		1 HOLDE		+/+

Contents **xv**

	13.7	Conclusions and Perspectives	476
Part	4 I	Bio-Medical Applications of MIP Sensors	485
14.	Mate	ein-Sensing Using Organic/Inorganic Hybrid erials Prepared by Liquid-Phase Deposition-	
		d Molecular Imprinting	487
		ifumi Takeuchi	
		Introduction	487
		Liquid-Phase Deposition	489
		Cationic Polyions/Titanium Oxide Hybrid Materials for Acidic Protein Recognition	490
	14.4	Anionic Polymer/TiO ₂ Hybrid Materials for Basic Protein-Sensing	492
	14.5	Protein Imprinting on Quantum Dots by LPD	
		Method	493
	14.6	Conclusion	494
15.	Mole	ecular Imprinted Polymer-Based	
	Chen	niluminescence Sensors	499
	Zhujı	un Zhang	
	15.1	Introduction	499
	15.2	Molecular Imprinted Polymer-Based	
		Chemiluminescence Flow Sensors	503
	15.3	Molecular Imprinted Polymer-BasedCL Imaging Sensors	F 10
	15 /	Molecular Imprinted Polymer-Based	512
	13.4	Chemiluminescence Biosensor Chips	517
	15.5	Molecular Imprinted Polymer Recognition and	017
		Online Electrogenerated Reagent	
		Chemiluminescence Detection	519
16.	Dete	ction of Cells and Viruses Using Synthetic	
		bodies	527
	Adna	n Mujahid, and Franz L. Dickert	
	16.1	Introduction	528
	16.2	Molecular Imprinting for Biomolecules	530
	16.3	Synthetic Antibodies for Cells Detection	532
		16.3.1 Yeast Cells	533

	16.3.2	Blood Cells Detection	537
	16.3.3	Bacterial Detection Through Synthetic	
		Materials	541
16.4	Imprin	ted Materials – A novel tool for Virus	
	Sensing	g	547
	16.4.1	Tobacco Mosaic Virus (TMV) Imprinting	548
	16.4.2	Parapox Ovis Virus (ORF) Sensing	551
	16.4.3	Bovine Leukemia Virus Imprinting	552
	16.4.4	Molecular Imprinting for Picornaviruses	553
	16.4.5	Dengue Virus Detection Through Epitope	
		Imprinting Approach	555
	16.4.6	Poliovirus Detection by Imprinted SAMs	557
	16.4.7	Virus Sensing by MIP-Coated	
		Microsensors	558
16.5	Conclu	ding Remarks and Future Outlook	559
rt 5	MIP Ma	arket and Prospects	569
		-	569
.7. Mole	ecularly	Imprinted Polymers: Science Goes	569
7. Mole Mar	ecularly ket? A M	-	
7. Mole Mar Situa	ecularly ket? A M ation	Timprinted Polymers: Science Goes Market Analysis Based on the Patent	569 571
7. Mole Mar Situa	ecularly ket? A M	Timprinted Polymers: Science Goes Market Analysis Based on the Patent	
7. Mole Mar Situa Soer	ecularly ket? A M ation	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher	
.7. Mole Mar Situa Soere 17.1	ecularly ket? A M ation en Schur	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action	571
27. Mole Mar Situa Soer 17.1 17.2	ecularly ket? A M ation en Schur Introdu Methoo	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action	571 573
27. Mole Mar Situa Soer 17.1 17.2	ecularly ket? A M ation en Schur Introdu Methoo Results	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action ds	571 573 574
 7. Mole Mari Situa Soera 17.1 17.2 	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action ds s and Discussion	571 573 574 575
 Mole Mary Situa Soere 17.1 17.2 	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1 17.3.2	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action ds and Discussion Patent Activity	571 573 574 575 575
 Mole Mary Situa Soere 17.1 17.2 	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1 17.3.2 17.3.3	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action ds and Discussion Patent Activity Application Areas	571 573 574 575 575 580
.7. Mole Mar Situa <i>Soere</i> 17.1 17.2	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1 17.3.2 17.3.3 17.3.4	Timprinted Polymers: Science Goes Market Analysis Based on the Patent nacher action ds and Discussion Patent Activity Application Areas Citation Analysis	571 573 574 575 575 580 580 586
L7. Mole Mar Situa Soer 17.1 17.2	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action ds and Discussion Patent Activity Application Areas Citation Analysis S-Curve Consideration	573 574 575 575 580 580
L7. Mole Mar Situa Soer 17.1 17.2	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6	Timprinted Polymers: Science Goes Market Analysis Based on the Patent macher action ds and Discussion Patent Activity Application Areas Citation Analysis S-Curve Consideration Company Overview	571 573 574 575 575 580 580 586 586
17. Mole Mari Situa Soera 17.1 17.2 17.3	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6	A Imprinted Polymers: Science Goes Market Analysis Based on the Patent nacher action ds and Discussion Patent Activity Application Areas Citation Analysis S-Curve Consideration Company Overview Patent Portfolio of Companies Competitive and SWOT Analysis	571 573 574 575 575 580 580 580 586 587 591
17. Mole Mari Situa Soera 17.1 17.2 17.3	ecularly ket? A M ation en Schur Introdu Methoo Results 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7	A Imprinted Polymers: Science Goes Market Analysis Based on the Patent nacher action ds and Discussion Patent Activity Application Areas Citation Analysis S-Curve Consideration Company Overview Patent Portfolio of Companies Competitive and SWOT Analysis	571 573 574 575 575 580 580 580 586 587 591 591

Preface

Molecular imprinting is now established as an indispensable tool for separation and sensor technologies. The most popular scheme to realize the molecular imprinting concept is probably the crosslinking of linear polymers in the presence of template molecules. Three-dimensional cavities would be created in the polymer network after the removal of template molecules. Unfortunately, the conformational adaptability of linear polymers is limited, and template molecules and the surrounding polymer chains cannot produce best molecular fitting in most cases. Molecular fitting by commonly employed imprinting materials is less than satisfactory compared with polypeptide chains of protein molecules. Superior three-dimensional fit of active sites of enzyme molecules and their specific substrates are truly remarkable.

Some of the inorganic chains are much more flexible than organic chains. For example, rotational and bending motions of metal–oxygen bonds are more facile than those of carbon–carbon bonds. This fact implies that metal oxide gels provide better molecular fitting with template molecules. In fact, the first example of molecular imprinting was reported in 1931 for silica matrix, as mentioned in Chapter 1. The use of inorganic matrices became much expanded in recent years and now occupies a significant fraction of molecular imprinting studies.

This handbook reflects this situation and attempts to survey the recent advances of molecular imprinting in inorganic and organic matrices in a combined form. The functional aspect is more or less focused on sensor applications. Such applications have become increasingly important in relation to environmental and biomedical issues, as summarized as Parts 3 and 4, respectively. The discussion in Chapter 1 will help grasp the pros and cons of inorganic matrices relative to organic matrices, and Part 5 provides a patent-based market analysis of molecular imprinting technology.

We are grateful to Mr. Stanford Chong of Pan Stanford Publishing for his continuous encouragement during the preparation of this handbook. Many thanks also to our wives, who showed splendid perseverance towards the absent (minded) husbands.